中学部3年の数学では、相似の学習をしてきました。単元の最後「相似の利用」の学習で「教室の高さはどのくらいでしょうか?」と学習問題を出しました。さて、中学部3年の二人は何をしたかというと・・・
「俺の身長が181cmだから・・・」「身長に1m定規を足して・・・」と測定を始めました。その方法で測れれば、もちろんこの方法でもOKですね。他にも、教室内にある定規を二人で協力して足して、直接教室の高さを測ろうとこんな事もしていました。
この方法も、もちろんアリです。だいたい〇cmくらいなんじゃないか、と見当がつきました。
そして、ここで二人は気づきます。「絶対に相似の考え方を使って計算できるはずだ!」と。その後、壁と床を利用して相似な直角三角形を作り、無事、教室の高さを計算しました。
計算を終えて、また問題が発生です。先ほど直接測って見当をつけた値と、相似の関係を使って計算した値がズレていました。ここで二人はまた考えます。計算過程のどこで間違えたのかと…。そして、「直角三角形の1辺の長さを測り間違えた。」と気づきました。
この1時間を通して、中学部3年の2人は何回も試行錯誤しました。直接測定をして数値の見当をつけ、学習してきた相似の考え方を使って計算した数値と比較検討して、どの程度正確なのか確かめ、誤差が生じていれば計算過程のどの部分に問題があったのかと自分たちの思考を振り返ることまでしていました。数学「を」学ぶのではなく、数学「で」学んだ1時間となりました。